If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14q^2+12q-23=0
a = 14; b = 12; c = -23;
Δ = b2-4ac
Δ = 122-4·14·(-23)
Δ = 1432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1432}=\sqrt{4*358}=\sqrt{4}*\sqrt{358}=2\sqrt{358}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{358}}{2*14}=\frac{-12-2\sqrt{358}}{28} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{358}}{2*14}=\frac{-12+2\sqrt{358}}{28} $
| 150m-125m+33,600=35,875-150 | | 2/3m+6=18 | | X^2+10x+3400=0 | | a+12/3=237/60 | | x=8724×2 | | f(5)=-2(25)+10-3 | | (5^2)+14−(8+x)−(2−1)=4 | | x^2-3x+4+2x^2-x-12= | | 17n-13n=12 | | 11x-89=5x+61 | | x=20+20 | | -20-5x=-6x+2 | | (-4)+g=2 | | 30x-5x+10=30 | | 8.3(x+3)=37.35 | | 4x+5-2x+12=32 | | -3/x=-1/3x-3 | | 2x-5x^2-10x+25=0 | | 324(-2.3-4.687)=2356-78-(45.6x)+4(590x+47) | | w+2=36 | | -7(x+3)=2-x | | 9n+n=10 | | 125m+100m+43650=45000-200m | | -8=5z+5 | | X-37=71-8x | | f(3)=-5(9)-3+20 | | y÷7=2 | | Mx8+13=37 | | 3(7+9x)+-5(5x+1)=-8(9x+-4) | | f(3)=-5(3)^2-3+20 | | 12=y+2/3 | | 60m+85=70 |